Combined Attacks -
 from Boomerangs to Sandwiches and Differential-Linear

Orr Dunkelman

Department of Computer Science, University of Haifa

$$
\text { June } 5^{\text {th }}, 2014
$$

Outline

1 A Quick Introduction
■ Differential Cryptanalysis

- Linear Cryptanalysis

2 The Boomerang Attack

- The Boomerang Attack
- The Amplified Boomerang Attack
- Independence Assumptions

■ The Sandwich Attack
3 Differential-Linear Cryptanalysis

- The Basic Concept
- A Differential-Linear Attack on 8-Round DES
- Several Extensions to Differential-Linear Cryptanalysis

4 Summary

Differential Cryptanalysis

- Considers the development of differences through the encryption process.
- The core of the attack: a differential characteristic (a prediction of the development of differences through the encryption process).
- Given a differential characteristic with probability p, the adversary asks for $O(1 / p)$ pairs of plaintexts $\left(P, P^{*}=P \oplus \Omega_{P}\right)$.
- The attack tries to locate "right pairs", i.e., a pair whose corresponding ciphertexts satisfy $C^{*}=C \oplus \Omega_{C}$.
- Information about the key can be learnt from the right pair.

Differential Cryptanalysis (cont.)

- To attack more rounds of the cipher than in the differential characteristic:
- Guess subkey material in the additional rounds,
- Partially encrypt/decrypt the plaintext/ciphertext pairs,
- Count how many "right pairs" exist,
- The counter for the right subkey is expected to be the highest.
- In such attacks, we care less about "which pair is a right pair", and more about how many such pairs exist.
- Hence, for this sort of attacks, we are only interested in the input and output differences.
- This set of $\left(\Omega_{P}, \Omega_{C}\right)$ and the associated probability is called a differential. Its probability is the sum of the probabilities of all differential characteristics that share Ω_{P} and Ω_{C}.

Differential Characteristic of DES

A three-round differential characteristic of DES with probability $1 / 16$:

Differential Characteristic of DES (cont.)

A 3-round truncated differential characteristic of DES:

Linear Cryptanalysis

- Tries to approximate the cipher (or a reduced-round variant of it) as a linear equation:

$$
\lambda_{P} \cdot P \oplus \lambda_{C} \cdot C=\lambda_{K} \cdot K
$$

with probability $1 / 2+\epsilon$.

- Collect $N=O\left(\epsilon^{-2}\right)$ known plaintext/ciphertext pairs. The majority are expected to satisfy $\lambda_{P} \cdot P \oplus \lambda_{C} \cdot C=\lambda_{K} \cdot K($ when $\epsilon>0)$.
- To attack more rounds than in the linear approximation:
- Guess subkey material in the additional rounds,
- Partially encrypt/decrypt the plaintext/ciphertext pairs,
- Count how many times $\lambda_{P} \cdot P \oplus \lambda_{C} \cdot C=0$,
- The counter for the right subkey is expected to be more biased.

Linear Cryptanalysis (cont.)

- The attack is actually a random process.
- Consider the following scenario:
- There are 2^{s} possible subkeys.
- We want the right subkey to be among the 2^{a} most biased ones.
- Let $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$.
- A linear attack with $N=c / \epsilon^{2}$ known plaintexts has a success probability of

$$
P_{s}=\Phi\left(2 c-\Phi^{-1}\left(1-2^{-a-1}\right)\right) .
$$

To achieve a success probability of P_{s}, set

$$
N=\left(\frac{\Phi^{-1}\left(P_{s}\right)+\Phi^{-1}\left(1-2^{-a-1}\right)}{2}\right)^{2} \cdot \epsilon^{-2}
$$

Linear Approximation of DES

A three-round linear approximation of DES with bias $1 / 2+2 \cdot\left(\frac{20}{64}\right)^{2}=1 / 2+\frac{25}{128}$:

$1 / 2+1 / 2$

$1 / 2-\frac{20}{64}$

Some General Comments

- Finding good differential characteristics/linear approximation is a hard task.
- Some automatic tools exist (Matsui's method), but it is better to study the algorithm.
- Sometimes, a better attack is obtained when using differentials (approximations) of lower probability (bias).
- Many optimizations for both attacks exist. Consider differential cryptanalysis:
- Structures of plaintexts,
- Discarding wrong pairs (early abort),
- Using multiple differentials,

The Boomerang Attack

- Introduced by [W99].
- Targets ciphers with good short differentials, but bad long ones.
- The core idea: Treat the cipher as a cascade of two sub-ciphers. Where in the first sub-cipher a differential $\alpha \xrightarrow{E_{0}} \beta$ exists, and a differential $\gamma \xrightarrow{E_{1}} \delta$ exists for the second.
- The process starts with a pair of plaintexts: $P_{1}, P_{2}=P_{1} \oplus \alpha$.
- After the first sub-cipher,
 $T_{1} \oplus T_{2}=\beta$.

The Boomerang Attack - Some Details

- If the probability of the first differential is p, and of the second differential is q, the total probability of the boomerang quartet is

$$
\operatorname{Pr}[\alpha \rightarrow \beta]^{2} \cdot \operatorname{Pr}[\gamma \rightarrow \delta]^{2}=(p q)^{2}
$$

- Note that we use three out of the four differentials in the backward direction.
- For regular differentials, the probability is the same.
- However, for truncated differentials, the probability is not necessarily the same.

The Boomerang Attack - Some More Details

- A right boomerang quartet discloses information about the key.
- At the same time, the attack is an adaptive chosen plaintext and ciphertext attack.
- This prevents us from using many of the cryptanalytic techniques that were proposed over the years.
- To overcome this, we need to transform the attack into a chosen plaintext attack.

The Amplified Boomerang Attack

- Introduced by [KKS00].
- Similar idea to the boomerang attack, but in a chosen plaintext scenario.
- Again, assume the existence of two ${ }^{E_{0}}$ differentials: $\alpha \xrightarrow{E_{0}} \beta$ for the first sub-cipher and $\gamma \xrightarrow{E_{1}} \delta$ for the second.
- Take many pairs of plaintext with difference α : $P_{1}^{i}, P_{2}^{i}=P_{1}^{i} \oplus \alpha$.
- After the first sub-cipher, for some
 of them $T_{1}^{i} \oplus T_{2}^{i}=\beta$.

The Amplified Boomerang Attack - Some Details

- If the probability of the first differential is p, and of the second differential is q, the total probability of the amplified boomerang quartet is
$\operatorname{Pr}[\alpha \rightarrow \beta]^{2} \cdot \operatorname{Pr}[\gamma \rightarrow \delta]^{2} \cdot \mathbf{2}^{-n}=(p q)^{2} \cdot 2^{-n}$.
- In other words, the probability is less than 2^{-n} !

The Amplified Boomerang Attack - Some Details

 (cont.)- If we take N pair with input difference α, we obtain about $N^{2} / 2$ quartets.
- Hence, we expect

$$
N^{2} / 2 \cdot(p q)^{2} \cdot 2^{-n}
$$

right amplified boomerang quartets.

- Start with $N=O\left(2^{n / 2} / p q\right)$ pairs.
- As long as $(p q)>2^{-n / 2}$, we can have enough data to run the attack.
- Which is the same condition as for the boomerang attack...

The Rectangle Attack - Three Improvements

1 If the quartet $\left(\left(P_{1}^{i}, P_{2}^{i}\right),\left(P_{1}^{j}, P_{2}^{j}\right)\right)$ is not a right quartet, then maybe $\left(\left(P_{1}^{i}, P_{2}^{i}\right),\left(P_{2}^{j}, P_{1}^{j}\right)\right)$ is a right one?
(2) If $T_{1}^{i} \oplus T_{2}^{i}=\beta^{\prime}$, but so does $T_{1}^{j} \oplus T_{2}^{j}=\beta^{\prime}$, we can still get a right quartet.
3 If $T_{1}^{i} \oplus T_{1}^{j}=\gamma^{\prime}$, but so does $T_{2}^{i} \oplus T_{2}^{j}=\gamma^{\prime}$, we can still get a right quartet.
Expected number of right quartets starting with N pairs:

$$
\begin{gathered}
N^{2} \cdot 2^{-n+1} \cdot(p q)^{2} \\
N^{2} \cdot 2^{-n} \cdot(p q)^{2} \\
N^{2} \cdot 2^{-n} \cdot\left(\sum_{\beta^{\prime}} \operatorname{Pr}\left[\alpha \xrightarrow{E_{0}} \beta^{\prime}\right]^{2}\right) q^{2}
\end{gathered}
$$

$$
\underset{\text { Orr Dunkelman }}{\left.N^{2} \cdot 2^{-n} \cdot\left(\sum_{\text {Combined Attacks }} \operatorname{Pr}\left[\alpha \xrightarrow{E_{0}} \beta^{\prime}\right]^{2}\right) \cdot\left(\sum \operatorname{Pr}\left[\gamma^{\prime} \xrightarrow{E_{1}} \delta\right]^{2}\right) .()^{2}\right)}
$$

A Technical Problem. . .

- In the boomerang attack the quartet is fully known.
- In the amplified boomerang attack, one needs to find the quartets among all possible ones.
- This task is hard, as the number of candidate quartets is at least 2^{n}.

Underlying Assumptions for Differential Attacks

Formally, define

$$
G_{K}(\alpha \xrightarrow{E} \beta)=\left\{P \mid E_{K}(P) \oplus E_{K}(P \oplus \alpha)=\beta\right\} .
$$

and

$$
G_{K}^{-1}(\alpha \stackrel{E}{\rightarrow} \beta)=\left\{C \mid E_{K}^{-1}(C) \oplus E_{K}^{-1}(C \oplus \beta)=\alpha\right\} .
$$

These two sets contain all the right pairs (i.e., X is in the set if it is a part of a right pair).

Independence Assumptions for Differential Attacks

1 The probability of the differential characteristic in round i is independent of other rounds.
(formally: the event $X \in G_{K}^{-1}\left(\alpha \xrightarrow{E_{0}} \beta\right)$ is independent of the event $X \in G_{K}\left(\beta \xrightarrow{E_{1}} \gamma\right)$ for all K 's and β)

2 Partial encryption/decryption under the wrong key makes the cipher closer to a random permutation.

Independent Subkeys

- A cipher whose subkeys are all chosen at random (independently of each other) can be modeled as a Markov chain.
- For such a cipher, the previous conditions are satisfied (under reasonable use of the keys) as the independent subkeys assure that the inputs to each round are truly random and independent.

Independent Subkeys - Where we Cheated

- The above assumes that the keys are chosen during the differential attack, and for each new pair of plaintexts, they are chosen again at random.
- This is of course wrong, as the key is fixed a priori, and the only source of "randomness" in the experiment is the plaintext pair.
- Hence, we need to assume Stochastic Equivalence, i.e.,

$$
\begin{aligned}
& \operatorname{Pr}[\Delta C=\beta \mid \Delta P=\alpha]= \\
& \quad \operatorname{Pr}\left[\Delta C=\beta \mid \Delta P=\alpha \wedge K=\left(k_{1}, k_{2}, \ldots\right)\right]
\end{aligned}
$$

for almost all keys K.

Underlying Assumptions for the Boomerang Attack

For $E=E_{1} \circ E_{0}$, and any set of differences α, γ^{\prime} and δ, we require that T is (part of) a right pair with respect to $\gamma^{\prime} \xrightarrow{E_{1}} \delta$ independently of the following three events:
$1 T$ is (part of) a right pair with respect to $\alpha \xrightarrow{E_{0}} \beta^{\prime}$ for all β^{\prime}.
$2 T \oplus \beta^{\prime}$ is (part of) a right pair with respect to $\gamma^{\prime \prime} \xrightarrow{E_{1}} \delta$ for all $\beta^{\prime}, \gamma^{\prime \prime}$.
$3 T \oplus \gamma_{1}$ is (part of) a right pair with respect to $\alpha \xrightarrow{E_{0}} \beta^{\prime \prime}$ for all $\beta^{\prime \prime}$.

When Independence Fails - Part I

- The independence may fail if
- There is one β whose most significant bit is 0 for which $\operatorname{Pr}\left[\alpha \xrightarrow{E_{0}} \beta\right]=1 / 2$.
- For all other $\beta^{\prime}: \operatorname{Pr}\left[\alpha \xrightarrow{E_{0}} \beta^{\prime}\right]$ is either 0 or 2^{-n+1}.
- All the pairs $\left(T, T^{*}\right)$ which satisfy the differential $\alpha \xrightarrow{E_{0}} \beta$ are such that the most significant bit of both T and T^{*} is set to 0 .
- There is one γ whose most significant bit is 1 for which

$$
\operatorname{Pr}\left[\gamma \xrightarrow{E_{1}} \delta\right]=1 / 2
$$

- For all other $\gamma^{\prime}: \operatorname{Pr}\left[\gamma^{\prime} \xrightarrow{E_{1}} \delta\right]$ is either 0 or 2^{-n+1}.

When Independence Fails - Part II

- Consider the case where the last round of the first differential characteristic relies on the transformation $x \xrightarrow{S} y$ for some S-box S.
- If the difference distribution table of S satisfies that $D D T_{S}(x, y)=2$, and if the difference in γ is such that the two pairs $\left(T_{a}, T_{c}\right)$ and $\left(T_{b}, T_{d}\right)$ have a non-zero difference in the bits of x, then the transition is impossible.

Is it Serious?

- It is possible to construct not-so-artificial examples of boomerangs that fail one of the above two examples [M09].
- On the other hand, the failure is with respect to a pair of intermediate differences $\beta^{\prime}, \gamma^{\prime}$.
- When truly taking all possible differences (in the boomerang attack or in the rectangle attack), this problem tends to "shrink".
- Sometimes, the dependence can be used for the benefit of the adversary:
- Boomerang switch [BK09],
- Sandwich attach [DKS10]

For more details: Kim et al.
http://eprint.iacr.org/2010/019

The Bright Side of Dependence

- Assume that $\gamma^{R}=0$.
- In other words, $X_{a}^{R}=Y_{a}^{R}=Y_{c}^{R}=X_{c}^{R}$ and $X_{b}^{R}=Y_{b}^{R}=Y_{d}^{R}=X_{d}^{R}$.
- Hence, if $X_{a}^{R} \rightarrow O_{a}$ and $X_{b}^{R} \rightarrow O_{b}$, then $X_{c}^{R} \rightarrow O_{a}$ and $X_{d}^{R} \rightarrow O_{b}$ as well.
- Which ensures that the last round of the differential characteristic $\alpha \rightarrow \beta$ is satisfied for the second pair!

The Sandwich

The probability of a quartet to be a right one is:
$\operatorname{Pr}\left[P_{c} \oplus P_{d}=\alpha\right]=\operatorname{Pr}\left[X_{a} \oplus X_{b}=\beta\right] \cdot \operatorname{Pr}\left[Y_{a} \oplus Y_{c}=\gamma\right] \cdot \operatorname{Pr}\left[Y_{b} \oplus Y_{d}=\gamma\right]$. $\operatorname{Pr}\left[X_{c} \oplus X_{d}=\beta \mid\right.$ Previous conditions hold $]$.

The Transition M

- As noted before, M may prove that the transition happens with a lower or higher probability than expected.
- In Feistels, $\gamma^{R}=0$ is indeed quite useful (as well as $\gamma^{R}=\beta^{R}$).
- For SPNs similar cases can be constructed, as demonstrated by Biryukov and Khrovatovich in the boomerang switch.
- This transition has various interpretations, but it is actually a (constructive) use of the dependence.

Differential-Linear Cryptanalysis

- Introduced by Langford and Hellman in 1994.
- The idea is to combine two statistical properties: a differential characteristic and a linear approximation.

Differential-Linear Cryptanalysis (cont.)

- Consider 6-round DES.
- Take two plaintexts $\left(P_{1}, P_{2}=P_{1} \oplus \Omega_{P}\right)$ for $\Omega_{P}=4000000000000000_{x}$.
- After three rounds, the intermediate encryption values $\left(T_{1}, T_{2}\right)$ have no difference in more than 30 bits.
- Interestingly, five of these bits are masked by $\lambda_{T}=2104008000008000_{x}$.

Differential-Linear Cryptanalysis (cont.)

- In other words,

$$
\lambda_{T} \cdot T_{1}=\lambda_{T} \cdot T_{2}
$$

- We know that $\lambda_{T} \cdot T_{1} \oplus \lambda_{C} \cdot C_{1}=\lambda_{K} \cdot K$ and that $\lambda_{T} \cdot T_{2} \oplus \lambda_{C} \cdot C_{2}=\lambda_{K} \cdot K$ (each with probability of $\left.1 / 2+\frac{25}{128}\right)$.
- Hence, $\lambda_{C} \cdot C_{1}=\lambda_{C} \cdot C_{2}$ with probability of $1 / 2+0.0763$ (about $1 / 2+1 / 13.1$).
- For a random permutation, this probability is expected to be $1 / 2$, and about $1 /(1 / 13.1)^{2} \approx 172$ pairs with input difference Ω_{p} are needed.

A Differential-Linear Attack on 8-Round DES

- The attack starts with structures of plaintexts.
- In each structure, after the first round, there are 16 pairs of plaintexts with input difference $\Omega_{P}=4000000000000000_{x}$.
- After obtaining their ciphertexts:

1 For each guess of the 6-bit subkey of $S 1$ in round 1 , find the pairs with input difference
$\Omega_{P}=4000000000000000_{x}$ to the second round.
2 For each guess of the 6-bit subkey of $S 5$ in round 8 , partially decrypt the pair, and check whether $\lambda_{C} \cdot C_{1}=\lambda_{C} \cdot C_{2}$.
3 The subkey for which $\lambda_{C} \cdot C_{1}=\lambda_{C} \cdot C_{2}$ happens the most is likely to be the correct one.

Several Extensions

- One can deal with (truncated) differentials with probability lower than 1.
- If the differential has probability p, and the linear approximation has bias ϵ, the total bias of the differential-linear is $2 p \epsilon^{2}$.
- If you can evaluate $\operatorname{Pr}\left[\Omega_{T} \cdot \lambda_{T}=0\right]$ for many differentials — even better ([L12]).
- The sign of the bias, depends on $\Omega_{T} \cdot \lambda_{T}$.
- Even if $\Omega_{T} \cdot \lambda_{T}$ is unknown, as long as it has some more probable value, the relation $\lambda_{C} \cdot C_{1}=\lambda_{C} \cdot C_{2}$ will be biased.

Research Directions in Cryptanalysis

- Attack various ciphers,
- Develop new attacks,
- Better mathematical foundation to some attacks,
- Better understanding of security,

Questions?

Thank you for your Attention!

