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Differential Cryptanalysis

◮ Considers the development of differences through the
encryption process.

◮ The core of the attack: a differential characteristic (a
prediction of the development of differences through the
encryption process).

◮ Given a differential characteristic with probability p, the
adversary asks for O(1/p) pairs of plaintexts
(P,P∗ = P ⊕ ΩP).

◮ The attack tries to locate “right pairs”, i.e., a pair whose
corresponding ciphertexts satisfy C ∗ = C ⊕ ΩC .

◮ Information about the key can be learnt from the right
pair.
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Differential Cryptanalysis (cont.)

◮ To attack more rounds of the cipher than in the
differential characteristic:

◮ Guess subkey material in the additional rounds,
◮ Partially encrypt/decrypt the plaintext/ciphertext pairs,
◮ Count how many “right pairs” exist,
◮ The counter for the right subkey is expected to be the

highest.
◮ In such attacks, we care less about “which pair is a right

pair”, and more about how many such pairs exist.
◮ Hence, for this sort of attacks, we are only interested in

the input and output differences.
◮ This set of (ΩP ,ΩC ) and the associated probability is

called a differential. Its probability is the sum of the
probabilities of all differential characteristics that share
ΩP and ΩC .
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Differential Characteristic of DES

A three-round differential characteristic of DES with
probability 1/16:

ΩP = 40 08 00 00 04 00 00 00x

A′ = 40 08 00 00x a′ = 04 00 00 00x p = 1
4

B ′ = 0x b′ = 0x p = 1

C ′ = 40 08 00 00x c ′ = 04 00 00 00x p = 1
4

ΩT = 40 08 00 00 04 00 00 00x

F

F

F
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Differential Characteristic of DES (cont.)

A 3-round truncated differential characteristic of DES:

ΩP = 40 00 00 00 00 00 00 00x

A′ = 0 a′ = 0 p = 1

B ′ = 00 W 0 XY 0Zx b′ = 40 00 00 00x p = 1

= P(V 0 00 00 00x)

C ′ =?? ?? M? ??x c ′ = 00 W 0 XY 0Zx p = 1

= P(0? ?? ?? 0?x)

ΩT =?? ?? M? ?? 00 W 0 XY 0Zx

F

F

F
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Linear Cryptanalysis

◮ Tries to approximate the cipher (or a reduced-round
variant of it) as a linear equation:

λP · P ⊕ λC · C = λK · K

with probability 1/2 + ǫ.

◮ Collect N = O(ǫ−2) known plaintext/ciphertext pairs.
The majority are expected to satisfy
λP · P ⊕ λC · C = λK · K (when ǫ > 0).

◮ To attack more rounds than in the linear approximation:
◮ Guess subkey material in the additional rounds,
◮ Partially encrypt/decrypt the plaintext/ciphertext pairs,
◮ Count how many times λP · P ⊕ λC · C = 0,
◮ The counter for the right subkey is expected to be more

biased.
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Linear Cryptanalysis (cont.)

◮ The attack is actually a random process.
◮ Consider the following scenario:

◮ There are 2s possible subkeys.
◮ We want the right subkey to be among the 2a most

biased ones.

◮ Let Φ(x) =
x
∫

−∞

1√
2π
e−x2/2dx .

◮ A linear attack with N = c/ǫ2 known plaintexts has a
success probability of

Ps = Φ
(

2c − Φ−1
(

1− 2−a−1
))

.

To achieve a success probability of Ps , set

N =

(

Φ−1(Ps) + Φ−1 (1− 2−a−1)

2

)2

· ǫ−2.
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Linear Approximation of DES

A three-round linear approximation of DES with bias
1/2 + 2 · (20

64
)2 = 1/2 + 25

128
:

λT = 21 04 00 80 00 00 80 00x

A′ = 21 04 00 80x a′ = 00 00 80 00x 1/2− 20
64

= P(00 00 F0 00x)

B ′ = 0 b′ = 0 1/2+1/2

C ′ = 21 04 00 80x c ′ = 00 00 80 00x 1/2− 20
64

= P(00 00 F0 00x)

λC = λT = 21 04 00 80 00 00 80 00x

F

F

F
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Some General Comments

◮ Finding good differential characteristics/linear
approximation is a hard task.

◮ Some automatic tools exist (Matsui’s method), but it is
better to study the algorithm.

◮ Sometimes, a better attack is obtained when using
differentials (approximations) of lower probability (bias).

◮ Many optimizations for both attacks exist. Consider
differential cryptanalysis:

◮ Structures of plaintexts,
◮ Discarding wrong pairs (early abort),
◮ Using multiple differentials,
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The Boomerang Attack

◮ Introduced by [W99].

◮ Targets ciphers with good short
differentials, but bad long ones.

◮ The core idea: Treat the cipher as a
cascade of two sub-ciphers. Where
in the first sub-cipher a differential

α
E0−→ β exists, and a differential

γ
E1−→ δ exists for the second.

◮ The process starts with a pair of
plaintexts: P1,P2 = P1 ⊕ α.

◮ After the first sub-cipher,
T1 ⊕ T2 = β.

◮ But the encryption process

P1

P2

T1

T2

α
β

E0

C1

C2

E1

C4

δ

T4

γ

T3

γ

C3

δ

β

P3

P4

α
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The Boomerang Attack — Some Details

◮ If the probability of the first differential is p, and of the
second differential is q, the total probability of the
boomerang quartet is

Pr[α → β]2 · Pr[γ → δ]2 = (pq)2.

◮ Note that we use three out of the four differentials in the
backward direction.

◮ For regular differentials, the probability is the same.

◮ However, for truncated differentials, the probability is not
necessarily the same.
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The Boomerang Attack — Some More Details

◮ A right boomerang quartet discloses information about
the key.

◮ At the same time, the attack is an adaptive chosen
plaintext and ciphertext attack.

◮ This prevents us from using many of the cryptanalytic
techniques that were proposed over the years.

◮ To overcome this, we need to transform the attack into a
chosen plaintext attack.
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The Amplified Boomerang Attack

◮ Introduced by [KKS00].

◮ Similar idea to the boomerang
attack, but in a chosen plaintext
scenario.

◮ Again, assume the existence of two

differentials: α
E0−→ β for the first

sub-cipher and γ
E1−→ δ for the

second.

◮ Take many pairs of plaintext with
difference α: P i

1,P
i
2 = P i

1 ⊕ α.

◮ After the first sub-cipher, for some
of them T i

1 ⊕ T i
2 = β.

◮ If we have many pairs
i i i

P i
1

P i
2

P
j
1

P
j
2

αα

T i
1

T i
2

T
j
1

T
j
2

β

E0

β

γ

γ

E1

C i
1

C i
2

C
j
1

C
j
2

δ

δ

Orr Dunkelman Combined Attacks 14/ 36



Introduction Boomerang Diff-Lin Summary Boomerang Amp. Boom. Independence Sandwich

The Amplified Boomerang Attack — Some Details

◮ If the probability of the first differential
is p, and of the second differential is q,
the total probability of the amplified
boomerang quartet is

Pr[α → β]2·Pr[γ → δ]2·2−n = (pq)2·2−n.

◮ In other words, the
probability is less than 2−n!
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The Amplified Boomerang Attack — Some Details

(cont.)

◮ If we take N pair with input difference
α, we obtain about N2/2 quartets.

◮ Hence, we expect

N2/2 · (pq)2 · 2−n

right amplified boomerang quartets.

◮ Start with N = O(2n/2/pq) pairs.

◮ As long as (pq) > 2−n/2, we can have
enough data to run the attack.

◮ Which is the same condition as for the
boomerang attack. . .
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The Rectangle Attack — Three Improvements

1 If the quartet ((P i
1,P

i
2), (P

j
1,P

j
2)) is not a right quartet,

then maybe ((P i
1,P

i
2), (P

j
2,P

j
1)) is a right one?

2 If T i
1 ⊕ T i

2 = β ′, but so does T j
1 ⊕ T

j
2 = β ′, we can still

get a right quartet.
3 If T i

1 ⊕ T
j
1 = γ′, but so does T i

2 ⊕ T
j
2 = γ′, we can still

get a right quartet.

Expected number of right quartets starting with N pairs:

N2 · 2−n+1 · (pq)2

N2 · 2−n · (pq)2

N2 · 2−n ·

(

∑

β′

Pr[α
E0−→ β ′]2

)

q2

N2 · 2−n ·

(

∑

β′

Pr[α
E0−→ β ′]2

)

·

(

∑

γ′

Pr[γ′ E1−→ δ]2

)
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A Technical Problem. . .

◮ In the boomerang attack the quartet is fully known.

◮ In the amplified boomerang attack, one needs to find the
quartets among all possible ones.

◮ This task is hard, as the number of candidate quartets is
at least 2n.
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Underlying Assumptions for Differential Attacks

Formally, define

GK

(

α
E
−→ β

)

=
{

P
∣

∣EK (P)⊕ EK (P ⊕ α) = β
}

.

and

G−1
K

(

α
E
−→ β

)

=
{

C
∣

∣E−1
K (C )⊕ E−1

K (C ⊕ β) = α
}

.

These two sets contain all the right pairs (i.e., X is in the set
if it is a part of a right pair).
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Independence Assumptions for Differential Attacks

1 The probability of the differential characteristic in round i

is independent of other rounds.

(formally: the event X ∈ G−1
K (α

E0−→ β) is independent of the

event X ∈ GK (β
E1−→ γ) for all K ’s and β)

2 Partial encryption/decryption under the wrong key makes
the cipher closer to a random permutation.
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Independent Subkeys

◮ A cipher whose subkeys are all chosen at random
(independently of each other) can be modeled as a
Markov chain.

◮ For such a cipher, the previous conditions are satisfied
(under reasonable use of the keys) as the independent
subkeys assure that the inputs to each round are truly
random and independent.
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Independent Subkeys — Where we Cheated

◮ The above assumes that the keys are chosen during the
differential attack, and for each new pair of plaintexts,
they are chosen again at random.

◮ This is of course wrong, as the key is fixed a priori, and
the only source of “randomness” in the experiment is the
plaintext pair.

◮ Hence, we need to assume Stochastic Equivalence, i.e.,

Pr[∆C = β|∆P = α] =

Pr[∆C = β|∆P = α ∧ K = (k1, k2, . . .)]

for almost all keys K .
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Underlying Assumptions for the Boomerang Attack

For E = E1 ◦ E0, and any set of differences α, γ′ and δ,, we

require that T is (part of) a right pair with respect to γ′ E1−→ δ
independently of the following three events:

1 T is (part of) a right pair with respect to α
E0−→ β ′ for all

β ′.

2 T ⊕ β ′ is (part of) a right pair with respect to γ′′ E1−→ δ
for all β ′, γ′′.

3 T ⊕ γ1 is (part of) a right pair with respect to α
E0−→ β ′′

for all β ′′.
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When Independence Fails — Part I

◮ The independence may fail if
◮ There is one β whose most significant bit is 0 for which

Pr
[

α
E0−→ β

]

= 1/2.

◮ For all other β′: Pr
[

α
E0−→ β′

]

is either 0 or 2−n+1.

◮ All the pairs (T ,T ∗) which satisfy the differential

α
E0−→ β are such that the most significant bit of both T

and T ∗ is set to 0.
◮ There is one γ whose most significant bit is 1 for which

Pr
[

γ
E1−→ δ

]

= 1/2.

◮ For all other γ′: Pr
[

γ′
E1−→ δ

]

is either 0 or 2−n+1.
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When Independence Fails — Part II

◮ Consider the case where the last round of the first
differential characteristic relies on the transformation
x

S
−→ y for some S-box S .

◮ If the difference distribution table of S satisfies that
DDTS(x , y ) = 2, and if the difference in γ is such that
the two pairs (Ta,Tc) and (Tb,Td) have a non-zero
difference in the bits of x , then the transition is
impossible.
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Is it Serious?

◮ It is possible to construct not-so-artificial examples of
boomerangs that fail one of the above two examples
[M09].

◮ On the other hand, the failure is with respect to a pair of
intermediate differences β ′, γ′.

◮ When truly taking all possible differences (in the
boomerang attack or in the rectangle attack), this
problem tends to “shrink”.

◮ Sometimes, the dependence can be used for the benefit of
the adversary:

◮ Boomerang switch [BK09],
◮ Sandwich attach [DKS10]

For more details: Kim et al.
http://eprint.iacr.org/2010/019
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The Bright Side of Dependence

⊕

F

⊕

F

⊕

F

β
X L

Y L

XR

Y Rγ

O

M

◮ Assume that γR = 0.

◮ In other words, XR
a = Y R

a = Y R
c = XR

c and
XR
b = Y R

b = Y R
d = XR

d .

◮ Hence, if XR
a → Oa and XR

b → Ob, then XR
c → Oa and

XR
d → Ob as well.

◮ Which ensures that the last round of the differential
characteristic α → β is satisfied for the second pair!
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The Sandwich

Pa

Pb

Xa

Xb

Ya

Yb

Ca

Cb

Pc

Pd

Xc

Xd

Yc

Yd

Cc

Cd

α

β

α

β

γ

γ

δ

δ

E0

E1

M

Ka Kc

Kb Kd

The probability of a quartet to be a right one is:

Pr[Pc ⊕ Pd = α] = Pr[Xa ⊕ Xb = β] · Pr[Ya ⊕ Yc = γ] · Pr[Yb ⊕ Yd = γ] ·

Pr[Xc ⊕ Xd = β
∣

∣Previous conditions hold] ·

Pr[Xc ⊕ Xd → α
∣

∣Other three differentials hold]Orr Dunkelman Combined Attacks 28/ 36
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The Transition M

◮ As noted before, M may prove that the transition
happens with a lower or higher probability than expected.

◮ In Feistels, γR = 0 is indeed quite useful (as well as
γR = βR).

◮ For SPNs similar cases can be constructed, as
demonstrated by Biryukov and Khrovatovich in the
boomerang switch.

◮ This transition has various interpretations, but it is
actually a (constructive) use of the dependence.
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Differential-Linear Cryptanalysis

◮ Introduced by Langford and Hellman in 1994.

◮ The idea is to combine two statistical properties: a
differential characteristic and a linear approximation.
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Differential-Linear Cryptanalysis (cont.)

◮ Consider 6-round DES.

◮ Take two plaintexts (P1,P2 = P1 ⊕ ΩP) for
ΩP = 40 00 00 00 00 00 00 00x .

◮ After three rounds, the intermediate encryption values
(T1,T2) have no difference in more than 30 bits.

◮ Interestingly, five of these bits are masked by
λT = 21 04 00 80 00 00 80 00x .
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Differential-Linear Cryptanalysis (cont.)

◮ In other words,

λT · T1 = λT · T2.

◮ We know that λT · T1 ⊕ λC · C1 = λK · K and that
λT · T2 ⊕ λC · C2 = λK · K (each with probability of
1/2 + 25

128
).

◮ Hence, λC · C1 = λC · C2 with probability of 1/2 + 0.0763
(about 1/2 + 1/13.1).

◮ For a random permutation, this probability is expected to
be 1/2, and about 1/(1/13.1)2 ≈ 172 pairs with input
difference ΩP are needed.
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A Differential-Linear Attack on 8-Round DES

◮ The attack starts with structures of plaintexts.

◮ In each structure, after the first round, there are 16 pairs
of plaintexts with input difference
ΩP = 40 00 00 00 00 00 00 00x .

◮ After obtaining their ciphertexts:

1 For each guess of the 6-bit subkey of S1 in round 1, find
the pairs with input difference
ΩP = 40 00 00 00 00 00 00 00x to the second round.

2 For each guess of the 6-bit subkey of S5 in round 8,
partially decrypt the pair, and check whether
λC · C1 = λC · C2.

3 The subkey for which λC · C1 = λC · C2 happens the
most is likely to be the correct one.
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Several Extensions

◮ One can deal with (truncated) differentials with
probability lower than 1.

◮ If the differential has probability p, and the linear
approximation has bias ǫ, the total bias of the
differential-linear is 2pǫ2.

◮ If you can evaluate Pr[ΩT · λT = 0] for many differentials
— even better ([L12]).

◮ The sign of the bias, depends on ΩT · λT .

◮ Even if ΩT · λT is unknown, as long as it has some more
probable value, the relation λC · C1 = λC · C2 will be
biased.
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Research Directions in Cryptanalysis

◮ Attack various ciphers,

◮ Develop new attacks,

◮ Better mathematical foundation to some attacks,

◮ Better understanding of security,
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Questions?

Thank you for your Attention!
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